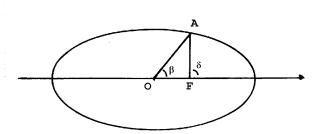
IV. L'EQ. DI VAG MEDIANTE EQ. POLARE

Equazione Polare Cap. IV Pag. 1

Essendo nella Eq. di Vag il valore $\left|\overline{OA}\right|$ (dall'origine ad un punto, ed in generale tra punto e punto) un valore assoluto, non ha nessuna importanza di come esso sia ricavato ed ottenuto.

Pertanto si vuol far vedere, che tale valore e' valido anche se calcolato con una equazione polare.

ELLISSE



A)Posto il polo nel centro dell'Ellisse e preso come asse polare l'asse maggiore orientato verso destra:

$$\rho^2 = \overline{OA}^2 = \frac{m^2}{1 - e^2 \cos^2 \beta}$$

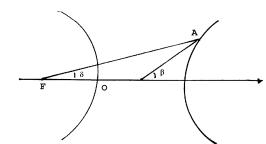
B)Posto invece il polo nel Fuoco a destra (punto F):

$$\rho = \overline{FA} = \frac{m^2}{q(1 + e \cos \delta)}$$

Si ricordi (Cap.III-Le Curve-Ellisse(Fuoco)-pag.3) che se il punto F non è il fuoco l'Eq. Polare assume l'espressione:

$$\rho = \overline{FA} = \frac{q^2 - c^2}{q(1 + \frac{c}{q}\cos\delta)}$$

IPERBOLE



A) Posto il polo nel centro dell'Iperbole e preso come asse polare l'asse trasverso orientato a destra:

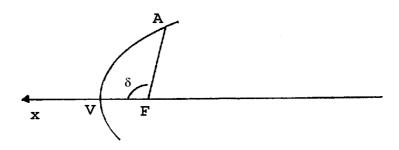
$$\rho^2 = \overline{OA}^2 = \frac{m^2}{1 - e^2 \cos^2 \beta}$$

B) Posto il polo nel fuoco a sinistra:

$$\rho = \overline{FA} = \frac{m^2}{q(1 + e \cos \delta)}$$

PARABOLA

Posto il polo nel fuoco e preso come asse polare l'asse di simmetria con orientamento opposto a quello dell'asse x.



$$\rho = \overline{FA} = \frac{p}{(1 + \cos \delta)}$$

Tale formula l'abbiamo incontrata trattando della parabola.

ESEMPIO

Che il valore $\overline{OA}^{^2}$ dell'Eq. Di Vag valga ρ^2 dell'eq. polare lo vediamo:

$$\begin{split} m^2 &= m^2 \, \sin^2 \alpha + m^2 \, \cos^2 \alpha + q^2 \, \cos^2 \alpha - q^2 \, \cos^2 \alpha \\ &= \left(q^2 \, \cos^2 \alpha + m^2 \, \sin^2 \alpha\right) + m^2 \, \cos^2 \alpha - q^2 \, \cos^2 \alpha = \overline{OA}^2 - (q^2 - m^2) \cos^2$$

Nel caso B) dell'ELLISSE con F=Fuoco abbiamo che:

*)
$$\rho = \overline{FA} = \frac{m^2}{q(1 + e \cos \delta)}$$

mentre nel caso dell'Ellisse in cui l'origine e' nel Fuoco abbiamo visto essere $\overline{FA}=(q-c\cos\alpha)=q(1-e\cos\alpha)$ (Cap.III).

Sviluppiamo la *):
$$\overline{FA} + e\overline{FA}\cos\delta = \frac{m^2}{q}$$
 1]

ma $\overline{FA}\cos\delta = (q\cos\alpha - c)$ (Cap.III) sostituendo $\overline{FA}\cos\delta$ nella *):

$$\overline{FA}$$
 + $e(q \cos \alpha - c) = FA + c \cos \alpha - \frac{c^2}{q} = \frac{m^2}{q}$

$$\overline{FA} = \frac{c^2}{q} + \frac{m^2}{q} - c \cos \alpha = \frac{q^2 - m^2 + m^2}{q} - c \cos \alpha =$$

 $= (q - c \cos \alpha) = q(1 - e \cos \alpha)$

Pertanto avro':

$$\begin{cases} \rho\cos\delta = \frac{m^2}{q(1+e\cos\delta)}\cos\delta = \overline{FA}\cos\delta = (q\cos\alpha - c) = x \\ \rho\sin\delta = \frac{m^2}{q(1+e\cos\delta)}\sin\delta = \overline{FA}\sin\delta = m\sin\alpha = y \\ \tan\delta = \frac{m\sin\alpha}{q\cos\alpha - c} = \frac{m}{q}\frac{\sin\alpha}{(\cos\alpha - e)} \end{cases}$$

L'Eq. di Vag per esteso di una Ellisse e':

 $\frac{m^2}{q(1+e\cos\delta)} = q(1-e\cos\alpha) = (q\cos\alpha-c)\cos\delta + m\sin\alpha\sin\delta$ dove il primo membro e' come equazione polare.

Si osservi che da $sen\delta(q\cos\alpha-c)=\cos\delta msen\alpha$ considerando $\delta=90^{\circ}$ (cioè FA

perpendicolare all'asse x) si ha $\cos\alpha = \frac{c}{q} = e$ cioè i valori di cos

 α e l'eccentricità dell'ellisse coincidono.

Dal fatto che $\overline{FA} = q(1 - e\cos\alpha) \operatorname{per} \delta = 90^{\circ}$ si avrà che :

$$\overline{FA} = q(1 - e^2) = \frac{m^2}{q}$$

Per δ = 0 si vede che anche α = 0 ed FA avrà il valore : $\overline{FA} = (q-c) = q(1-e)$

Analogamente per $\underline{ \mbox{1'IPERBOLE caso B)}}$ si avrà eguaglianza tra eq. Polare ed Eq. di Vag:

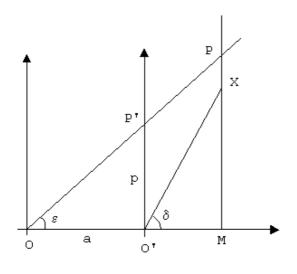
$$\overline{FA} = \frac{m^2}{q(1 + e\cos\delta)} = q(1 - e\cos\alpha) \qquad \overline{FA} + \overline{FA}e\cos\delta = \frac{m^2}{q}$$

Per
$$\delta$$
 = 90° cos δ = 0 avremo $\overline{FA} = \frac{m^2}{q} = \frac{c^2 - q^2}{q} = q(e^2 - 1)$

Dalla
$$\tan \delta = \frac{m \sin \alpha}{q(1 - e \cos \alpha)}$$
 si ha $\sin \delta q(1 - e \cos \alpha) = m \sin \alpha \cos \delta$ che per $\delta = 90^{\circ}$

$$\cos\delta \text{=0 darà }\cos\alpha = \frac{1}{e} \text{ (l'inverso del valore della ELLISSE)}$$

EQ. POLARE DELLE CURVE NOTE



Dai dati in figura accanto si voglia il luogo geometrico dei punti dati dal

rapporto
$$\frac{\overline{O'X}}{OM} = \tan \epsilon$$
 (ϵ costante e

compreso tra 0°< ϵ <90°). Da un punto X interno alla semiretta di angolo dato ϵ , e l'ascissa 00' è tracciato un segmento perpendicolare ad essa che determina i punti P ed M. Dalla figura deduciamo l'Eq. di Vag:

$$\begin{cases} \overline{OP}\cos\varepsilon = a + O'X\cos\delta = OM & \overline{MP} \\ \overline{OP}\sin\varepsilon = O'X\sin\delta = MP & \overline{OM} \end{cases} = \tan\varepsilon \qquad 1]$$

il che vuol dire

Pertanto dalla 1]:

$$\overline{O'X} = \overline{MP} \qquad 2]$$

$$\tan \varepsilon = \frac{O'X}{\alpha + O'X \cos \delta} \qquad O'X = a \tan \varepsilon + O'X \tan \varepsilon \cos \delta$$

$$O'X = \frac{a \tan \varepsilon}{1 - \tan \varepsilon \cos \delta}$$

In quest'ultima espressione fatto $\tan \epsilon = e$ (eccentricità) cioè $\tan \epsilon = e = \frac{p}{a} \text{ perveniamo all'Eq. Polare Classica che fornisce i valori delle distanze:}$

$$O'X = \frac{ea}{1 - e\cos\delta} = \frac{p}{1 - e\cos\delta}$$
 3bis]

mentre la sua posizione è data dall' Eq. Di Vag:

$$\begin{cases} \overline{XO'}\cos\delta = \frac{p}{1 - e\cos\delta}\cos\delta = x \\ \overline{XO'}\sin\delta = \frac{p}{1 - e\cos\delta}\sin\delta = y \end{cases}$$
 Il fatto che il denominatore della 3bis]

abbia segno negativo anziché positivo come nella Eq.Pol.Class. è senza rilevanza essendo condizionato dal segno di coseno. La 3bis] come Eq.Polare classica rappresenta:

$$0 < \epsilon < 45^{\circ}$$
 e < 1 Ellisse $\epsilon = 45^{\circ}$ e = 1 Parabola

 ϵ > 45° e > 1 Iperbole

 ϵ = 0° e=0 Con p≠0 una Circonferenza di raggio p in quanto avviene una trasformazione di

coordinate: OP' coincide con a e O'X con O'M
Parametro Focale: e in quanto segmento

rappresenta un Valore Assoluto

Sviluppiamo la 3bis]:

р

O'X =
$$\frac{e a}{1 - e \cos \delta} = \frac{a \sin \varepsilon}{\cos \varepsilon - \sec \varepsilon \cos \delta} = \frac{a}{\cot \varepsilon - \cos \delta}$$
 4]

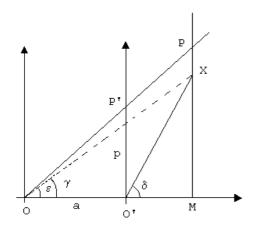
$$O'X = \frac{p}{1 - e\cos\delta} = \frac{p\cos\epsilon}{\cos\epsilon - \sec\epsilon\cos\delta} = \frac{p}{1 - \tan\epsilon\cos\delta}$$
 5]

Si osservino i seguenti passaggi:

$$\overline{O'X} = \overline{MP} = \overline{OP} \sin \varepsilon$$
 che

confrontata con la 4] darà il valore in 1] di:
$$\overline{OP} = \frac{a}{\cos \varepsilon - \sin \varepsilon \cos \delta}$$

Prendiamo in considerazione il segmento OX che formerà un angolo γ con l'asse dell'ascissa (come in figura), dando luogo alla Eq. di Vag:



$$\begin{cases} \overline{OX}\cos\gamma = OM = OP\cos\epsilon = \frac{a\cos\epsilon}{\cos\epsilon - \sin\epsilon\cos\delta} = X_v \\ \overline{OX}\sin\gamma = MX = O'X\sin\delta = \frac{a\sin\epsilon}{\cos\epsilon - \sin\epsilon\cos\delta}\sin\delta = Y_v \end{cases}$$

$$\tan \gamma = \tan \epsilon \sin \delta$$
 (poiché $\gamma < \delta$ è sempre $\frac{\tan \gamma}{\tan \delta} < 1$)

Sviluppando i valori di X_v e y_v si perviene dopo semplici passaggi:

$$X_{v} = \frac{p}{1 - e \cos \delta} \cdot \frac{1}{e} \qquad Y_{v} = \frac{p}{1 - e \cos \delta} \cdot \sin \delta \qquad 7$$

La 6] ci dice che la 7] ha coordinate date dalla Eq. Polare Classica come in 3bis] la cui distanza è moltiplicata per Cot ϵ anziché per cos δ e per sen δ in quanto costruita dal punto O anziché dal punto O', fuoco della figura.

Considerazioni sugli angoli. Poiché abbiamo visto essere O'X=MP per definizione con $0^{\circ} \le \delta \le 180^{\circ}$ si deduce che il punto X è sempre interno alle semirette OP e OM. Infatti se fosse X in P o al disopra di P il triangolo O'PM avrebbe che la sua ipotenusa sarebbe uguale al cateto MP.

Per δ =90° si ha X=0, cioè una trasformazione di coordinate per cui MP viene a coincidere con O'P'. Per valori di 90°< $\delta \leq$ 180° il punto tornerebbe ad essere compreso nel triangolo OO'P'.

E' importante notare che, come conseguenza, l'angolo γ sarà compreso tra $0\,{}^o\!\!\leq\gamma\leq\epsilon.$

Ricerca degli assi:

a) Per ε < 45° tan ε =e<1 caso Ellisse:

per δ = 90° cos δ = 0 dalla figura vediamo O'P' = p e da questo stesso capitolo sappiamo $\overline{FA} = \overline{O'P'} = q \Big(1 - e^2\Big) = \frac{m^2}{q} = p$

quindi
$$q = \frac{p}{1 - e^2}$$
 $m = \sqrt{qp} = \frac{p}{\sqrt{1 - e^2}}$ e $c = eq = e\frac{p}{1 - e^2}$

- b) Per $\epsilon > 45^{\circ} \tan \epsilon = e > 1$ caso Iperbole: per $\delta = 90^{\circ} \cos \delta = 0$ analogamente all'Ellisse avremo: $q = \frac{p}{e^2 1} \qquad m = \sqrt{qp} = \frac{p}{\sqrt{e^2 1}} \qquad e \qquad c = eq = e\frac{p}{e^2 1}$
- c) Per ϵ = 45° tan ϵ =e=1 caso Parabola. per δ = 90° cos δ = 0 p=a ed è accettato qualunque valore
- d) Per ϵ = 0 caso Circonferenza nella trasformazione delle coordinate p diventa il raggio mentre deve essere 1/e=cos δ

Centratura delle figure. Nel caso si utilizzi come Eq. Polare il caso 7],cioè le coordinate X_v e Y_v ,la figura risulta spostata rispetto all'origine, se si volesse centrarla, bisogna sottrarre all'ascissa il valore $\left(\frac{a}{1-e^2}\right)$ (ma solo per Cerchio, Ellisse;

Iperbole). Dalla 7] si ottengono i vertici con δ =0 avremo $\frac{a}{1-e}$ e con δ =180 $\frac{a}{1+e}$.

